US ERA ARCHIVE DOCUMENT

Integrating future climate change and riparian land-use to forecast the effects of stream warming on species invasions and their impacts on native salmonids

Julian D. Olden

School of Aquatic & Fishery Sciences

Research Team

Joshua J. Lawler College of Forest Resources, University of Washington

Christian E. Torgersen Forest and Rangeland Ecosystem Science Center,

USGS

Lauren KuehneSchool of
Fisheries,
University of
Washington

David Lawrence School of Fisheries, University of Washington

Aaron Ruesch College of Forest Resources, University of Washington

Challenge Synopsis

- The prospect of dramatic climate change over the next century underscores the need for innovative science and new decision-support tools for efficiently managing freshwater ecosystems
- Elevated stream temperature is one of the most pervasive water quality issues threatening freshwater ecosystems in the Pacific Northwest
- Cumulative effects and complex interactions among multiple agents of environmental change are unknown

Modeling MWMST

MWMST = f (...

- Mean Elevation
- Maximum 7-day average daily maximum air temperature
- Cumulative Riparian Solar Penetration
 - Amount of annual solar radiation that passes through canopy in riparian areas

Forecasting species responses

- Applied a mechanistic temperature model (Heat Source) that allows for the simulation of water temperature at the reach scale using high resolution spatially continuous data
- Predicted future thermal regimes according to climate and management scenarios

LiDAR from Watershed Sciences Inc. (2006)

Climate and management scenarios

Scenario	Description
Future climate	Scenarios of projected water temperature
Future vegetation	Scenarios of projected land development
Restored vegetation	Complete restoration to estimated potential vegetation (mature species composition)
	John Day Fish Habitat Enhancement Program
	Conservation and acquisition priorities (TNC, TFT)
Potential flow	Estimated volume of water in the absence of human-related influences
Thermal potential	Natural thermal potential associated with vegetation, flow and geomorphic restoration
Ecological targets	Scenarios targeting specific ecological outcomes

- Fatty acid analysis will provide an integrated measure of predation on juvenile salmon and degree of dietary overlap of SMB and NPM
- Bioenergetics modeling will provide insight into smallmouth bass and pikeminnow growth and consumption for different life stages in relation to temperature

Implications

- Robust management and policy strategies for freshwater ecosystems depend on understanding the interactive effects of multiple drivers of change
- Coupled correlative-mechanistic models will help identify opportunities for co-benefits arising from management actions that aim to minimize the future range expansion of invasive species and produce thermally-suitable habitat for coolwater salmonids
- Management portfolios based on different ecological endpoints will be distributed to local and regional agencies

Acknowledgements

- Field support: Chris Biggs, Eric Larson, Thomas Pool, Angela Strecker, Beka Stiling
- UW: Dave Beauchamp, James Starr, Jeremy Cram
- ORDEQ: Don Butcher, Julia Crown
- ODFW: Jeff Neal, Chris James, Jim Ruzycki
- NOAA: Brian Beckman, Andy Dittman, Carol Volk
- USGS: Jeff Duda, David Powell, Audrey Taylor, Ethan Welty
- North Fork John Day Ranger Station
- North Fork John Day Watershed Council
- TNC: Jerry Ebeltoft
- BLM: Jimmy Eisner, Anna Smith
- Pentec Environmental: Michelle Havey
- Watershed Sciences: Russell Faux
- >80 landowners that allowed access to their land

